Digital System Design

ecture

Combinational Logic Design

Binary Adder-Subtractor

Objectives:

- 1. Half Adder.
- 2. Full Adder.
- 3. Binary Adder.
- 4. Binary Subtractor.
- 5. Binary Adder-Subtractor.

1. Half Adder

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit needs two binary inputs and two binary outputs.

Inputs		Outputs		
X	Y	С	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	
Truth table				

The simplified Boolean function from the truth table:

 $\int \mathbf{S} = \overline{\mathbf{X}}\mathbf{Y} + \mathbf{X}\overline{\mathbf{Y}}$ **1** (Using sum of product form)

Where *S* is the sum and *C* is the carry.

 $\begin{cases} \mathbf{S} = \mathbf{X} \oplus \mathbf{Y} \\ \mathbf{C} = \mathbf{X} \mathbf{Y} \end{cases}$

 $\hat{\mathbf{C}} = \mathbf{X}\mathbf{Y}$

2 (Using XOR and AND Gates)

- The implementation of half adder using *exclusive-OR* and an *AND* gates is used to show that two half adders can be used to construct a full adder.
- > The inputs to the **XOR** gate are also the inputs to the **AND** gate.

2. Full Adder

Full Adder is a combinational circuit that performs the addition of three bits (two significant bits and previous carry).

- It consists of *three inputs and two outputs*, two inputs are the bits to be added, the third input represents the carry form the previous position.
- The full adder is usually a component in a cascade of adders, which add 8, 16, etc, binary numbers.

Inputs		Outputs			
X	Y	Cin	S	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
Truth table for the full adder					

> The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1.

> The C_{out} output has a carry 1 if two or three inputs are equal to 1.

> The Karnaugh maps and the simplified expression are shown in the following figures:

$$(S = \overline{X} \,\overline{Y}C_{in} + \overline{X}Y\overline{C_{in}} + X\overline{Y} \,\overline{C_{in}} + XYC_{in}$$
$$C_{out} = XY + XC_{in} + YC_{in}$$

1 (Sum of products)

The *logic diagrams* for the full adder implemented in *sum-of-products* form are the following:

It can also be implemented using two half adders and one OR gate (using XOR gates).

$$\begin{cases} S = C_{in} \oplus (X \oplus Y) \\ C_{out} = C_{in} \cdot (X \oplus Y) + XY \end{cases}$$

Proof:

The sum:

$$S = \overline{X} \,\overline{Y} C_{in} + \overline{X} Y \overline{C_{in}} + X \overline{Y} \,\overline{C_{in}} + X Y C_{in}$$
$$= \overline{C_{in}} (\overline{X} Y + X \overline{Y}) + C_{in} (\overline{X} \,\overline{Y} + X Y)$$
$$= \overline{C_{in}} (\overline{X} Y + X \overline{Y}) + C_{in} (\overline{\overline{X} Y + X \overline{Y}})$$

 $S = C_{in} \oplus (X \oplus Y)$

The carry output:

$$C_{out} = \overline{X}YC_{in} + X\overline{Y}C_{in} + XYC_{in} + XY\overline{C_{in}}$$
$$= C_{in}(\overline{X}Y + X\overline{Y}) + XY(C_{in} + \overline{C_{in}})$$

 $C_{out} = C_{in} \cdot (X \oplus Y) + XY$

3. Binary Adder (Asynchronous Ripple-Carry Adder)

- A binary adder is a digital circuit that produces the *arithmetic sum of two binary numbers*.
- A binary adder can be constructed with *full adders connected in cascade* with the output carry form each full adder connected to the input carry of the next full adder in the chain.
- The *four-bit adder* is a typical example of a *standard component*. It can be used in many application involving arithmetic operations.

- The input carry to the adder is C₀ and it ripples through the full adders to the output carry C₄.
- > n-bit binary adder requires n full adders.

Example:

Subscript i	3	2	1	0		
Input Carry	0	1	1	0	C _i	
A	1	0	1	1	4.	
+	1	v	1	1	Ai	$C_0 = 0$
B	0	0	1	1	B_i	
Sum	1	1	1	0	S_i	
Output Carry	0	0	1	1	C_{i+1}	

Carry Propagation

- The addition of A + B binary numbers in *parallel* implies that all the bits of A and B are available for computation at the same time.
- As in any combinational circuit, the signal must *propagate* through the gates before the correct output sum is available.
- The output will not be correct unless the signals are given enough time to propagate through the gates connected form the input to the output.
- The longest *propagation delay time* in an adder is the time it takes the carry to propagate through the full adders.

- > The signal form the carry input C_i to the output carry C_{i+1} propagates through an **AND** gate and an **OR** gate, which equals **2** gate levels.
 - If there are 4 full adders in the binary adder, the output carry C_4 would have $2 \times 4 = 8$ gate levels, form C_0 to C_4
 - For an *n*-bit adder, *2n* gate levels for the carry to propagate form input to output are required.

- The carry propagation time is an important attribute of the adder because it limits the speed with which two numbers are added.
- > To reduce the carry propagation delay time:
 - 1) Employ faster gates with reduced delays.
 - 2) Employ the principle of Carry Lookahead Logic.

Proof: (using carry lookahead logic)

$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

The output sum and carry are:

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

- ✓ G_i-called a carry generate, and it produces a carry of *I* when both A_i and B_i are *I*.
- ✓ P_i -called a *carry propagate*, it determines whether a carry into stage *i* will propagate into stage *i* + 1.
- ✓ The *Boolean function* for the carry outputs of each stage and substitute the value of each C_i form the previous equations:

$$\begin{cases} C_0 = input \, carry \\ C_1 = G_0 + P_0 C_0 \\ C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) \\ = G_1 + P_1 G_0 + P_1 P_0 C_0 \\ C_3 = G_2 + P_2 C_2 = G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 C_0) \\ = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \end{cases}$$

The three Boolean functions C₁, C₂ and C₃ are implemented in the *carry lookahead generator*.

The two level-circuit for the output carry C_4 is not shown, it can be easily derived by the equation.

> C_3 does not have to wait for C_2 and C_1 to propagate, in fact C_3 is propagated at the same time as C_1 and C_2 .

The construction of a *four-bit adder with a carry lookahead scheme* is the following:

4. Binary Subtractor

- ➤ To perform the subtraction -B, we can use the 2's complements, so the subtraction can be converted to addition.
- 2's complement can be obtained by talking the 1's complement and adding 1 to the LSD bit.
 - 1) *1's complement* can be implemented with inventors.
 - 2) *1* can be added to the sum through the input carry.
- ➤ The circuit for subtracting A B consists of an adder with inverters placed between each data input B and the corresponding input of the full adder. The input carry C_0 must be equal to 1.

5. Binary Adder–Subtractor

The addition and subtraction operations can be combined into one circuit with one common binary adder by including an *exclusive-OR* gate with each full-adder.

The mode input *M* controls the operation as the following:

- $\circ (\mathbf{M} = \mathbf{0} \rightarrow \text{adder.}$
- $\circ \ M = \mathbf{1} \rightarrow \text{subtractor.}$
- \succ Each *XOR* gate receives *M* signal and *B*
 - When M = 0 then $B \oplus 0 = B$ and the carry = 0, then the circuit performs the operation A + B.
 - When M = 1 then $B \oplus 1 = \overline{B}$ and the carry = 1, then the circuit performs the operation A B.
- > The *exclusive-OR* with output V is for detecting an overflow.