Digital System Design

Combinaitonal Hogic Desigu

BTinerpy Adodertsulbitactor

Objectives:

1. Half Adder.
2. Full Adder.
3. Binary Adder.
4. Binary Subtractor.
5. Binary Adder-Subtractor.

1. Half Adder

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit needs two binary inputs and two binary outputs.

Inputs		Outputs	
X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
Truth table			

The simplified Boolean function from the truth table:
$\left\{\begin{array}{l}\mathbf{S}=\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}} \\ \mathbf{C}=\mathbf{X Y}\end{array}\right.$
1 \} (Using sum of product form)

Where S is the sum and C is the carry.

$$
\left\{\begin{array}{l}
\mathbf{S}=\mathbf{X} \oplus \mathbf{Y} \\
\mathbf{C}=\mathbf{X Y}
\end{array}\right.
$$

$2\}$ (Using XOR and AND Gates)

Implementation of Half Adder using equation (2)
$>$ The implementation of half adder using exclusive-OR and an AND gates is used to show that two half adders can be used to construct a full adder.
$>$ The inputs to the $\mathbf{X O R}$ gate are also the inputs to the AND gate.

2. Full Adder

Full Adder is a combinational circuit that performs the addition of three bits (two significant bits and previous carry).
$>$ It consists of three inputs and two outputs, two inputs are the bits to be added, the third input represents the carry form the previous position.
\rightarrow The full adder is usually a component in a cascade of adders, which add 8,16 , etc, binary numbers.

Inputs			Outputs		
X	Y	$C_{\text {in }}$	S	$C_{\text {out }}$	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
Truth table for the full adder					

> The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1 .
$>$ The $C_{\text {out }}$ output has a carry 1 if two or three inputs are equal to 1 .
$>$ The Karnaugh maps and the simplified expression are shown in the following figures:

$$
\left\{\begin{array}{ll}
\mathbf{S}=\overline{\mathbf{X}} \overline{\mathbf{Y}} \mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{C}_{\mathbf{i n}}}+\mathbf{X} \overline{\mathbf{Y}} \overline{\mathbf{C}_{\mathbf{i n}}}+\mathbf{X Y \mathbf { C } _ { \mathbf { i n } }} & \\
\mathbf{C}_{\mathbf{o u t}} \mathbf{X Y}+\mathbf{X C} \mathbf{C}_{\mathbf{i n}}+\mathbf{Y} \mathbf{C}_{\mathbf{i n}} & \mathbf{1}
\end{array}\right\} \text { (Sum of products) }
$$

$>$ The logic diagrams for the full adder implemented in sum-of-products form are the following:

$>$ It can also be implemented using two half adders and one OR gate (using XOR gates).

$$
\left\{\begin{array}{l}
S=C_{i n} \oplus(X \oplus Y) \\
C_{\text {out }}=C_{i n} \cdot(X \oplus Y)+X Y
\end{array}\right\}
$$

Proof:

The sum:

$$
\begin{aligned}
\mathbf{S} & =\overline{\mathbf{X}} \overline{\mathbf{Y}} \mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{C}_{\mathbf{m}}}+\mathbf{X} \overline{\mathbf{Y}} \overline{\mathbf{C}_{\mathbf{i n}}}+\mathbf{X Y C} \mathbf{C}_{\mathbf{i n}} \\
& =\overline{\mathbf{C}_{\mathbf{i n}}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{C}_{\mathbf{i n}}(\overline{\mathbf{X}} \overline{\mathbf{Y}}+\mathbf{X Y}) \\
& =\overline{\mathbf{C}_{\mathbf{i n}}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{C}_{\mathbf{i n}} \overline{(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})} \\
S & =C_{i n} \oplus(X \oplus Y)
\end{aligned}
$$

The carry output:

$$
\begin{aligned}
C_{\text {out }} & =\overline{\mathbf{X}} \mathbf{Y C} \mathbf{C}_{\mathbf{i n}}+\mathbf{X} \overline{\mathbf{Y}} \mathbf{C}_{\mathbf{i n}}+\mathbf{X Y C} \mathbf{C}_{\mathbf{i n}}+\mathbf{X Y} \overline{\mathbf{C}_{\mathbf{n}}} \\
& =\mathbf{C}_{\mathbf{i n}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{X Y}\left(\mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{C}_{\mathbf{i n}}}\right) \\
C_{\text {out }}= & C_{\text {in }} \cdot(X \oplus Y)+X Y
\end{aligned}
$$

Implementation of Full Adder with two Half Adders and an OR gate

3. Binary Adder (Asynchronous Ripple-Carry Adder)

$>$ A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.
\rightarrow A binary adder can be constructed with full adders connected in cascade with the output carry form each full adder connected to the input carry of the next full adder in the chain.
$>$ The four-bit adder is a typical example of a standard component .It can be used in many application involving arithmetic operations.

$>$ The input carry to the adder is C_{0} and it ripples through the full adders to the output carry C_{4}.
$>\boldsymbol{n}$-bit binary adder requires \boldsymbol{n} full adders.

Example:

$A+B \quad(A=1011)$ and $(B=0011)$

Subscript i	3	2	1	0		$C_{0}=0$
Input Carry	0	1	1	0	C_{i}	
A	1	0	1	1		
+	1	0	1	1	A_{i}	
B	0	0	1	1	$\boldsymbol{B}_{\boldsymbol{i}}$	
Sum	1	1	1	0	S_{i}	
Output Carry	0	0	1	1	C_{i+1}	

Carry Propagation

$>$ The addition of $A+B$ binary numbers in parallel implies that all the bits of A and B are available for computation at the same time.
$>$ As in any combinational circuit, the signal must propagate through the gates before the correct output sum is available.
> The output will not be correct unless the signals are given enough time to propagate through the gates connected form the input to the output.
$>$ The longest propagation delay time in an adder is the time it takes the carry to propagate through the full adders.

Full Adder with P and G
$>$ The signal form the carry input C_{i} to the output carry C_{i+1} propagates through an $A N D$ gate and an $O R$ gate, which equals 2 gate levels.

- If there are 4 full adders in the binary adder, the output carry C_{4} would have $2 \times 4=8$ gate levels, form C_{0} to C_{4}
- For an n-bit adder, $2 n$ gate levels for the carry to propagate form input to output are required.
> The carry propagation time is an important attribute of the adder because it limits the speed with which two numbers are added.
$>$ To reduce the carry propagation delay time:

1) Employ faster gates with reduced delays.
2) Employ the principle of Carry Lookahead Logic.

Proof: (using carry lookahead logic)

$$
\begin{aligned}
& P_{i}=A_{i} \oplus B_{i} \\
& \boldsymbol{G}_{i}=A_{i} B_{i}
\end{aligned}
$$

The output sum and carry are:

$$
\begin{aligned}
& S_{i}=P_{i} \oplus C_{i} \\
& C_{i+1}=G_{i}+P_{i} C_{i}
\end{aligned}
$$

$\checkmark G_{i}$-called a carry generate, and it produces a carry of \boldsymbol{I} when both A_{i} and B_{i} are 1 .
$\checkmark P_{i}$-called a carry propagate, it determines whether a carry into stage i will propagate into stage $i+1$.
\checkmark The Boolean function for the carry outputs of each stage and substitute the value of each C_{i} form the previous equations:

$$
\left\{\begin{aligned}
C_{0} & =\text { input carry } \\
C_{1} & =G_{0}+P_{0} C_{0} \\
C_{2} & =G_{1}+P_{1} C_{1}=G_{1}+P_{1}\left(G_{0}+P_{0} C_{0}\right) \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0} \\
C_{3} & =G_{2}+P_{2} C_{2}=G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}\right) \\
& =G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}
\end{aligned}\right\}
$$

$>$ The three Boolean functions C_{1}, C_{2} and C_{3} are implemented in the carry lookahead generator.

The two level-circuit for the output carry \boldsymbol{C}_{4} is not shown, it can be easily derived by the equation.
$>C_{3}$ does not have to wait for C_{2} and C_{1} to propagate, in fact C_{3} is propagated at the same time as C_{1} and C_{2}.

Logic Diagram for Carry Lookahead Generator
$>$ The construction of a four-bit adder with a carry lookahead scheme is the following:

four-bit adder with a carry lookahead scheme

4. Binary Subtractor

$>$ To perform the subtraction $-B$, we can use the 2 's complements, so the subtraction can be converted to addition.
> 2's complement can be obtained by talking the 1's complement and adding 1 to the $L S D$ bit.

1) I's complement can be implemented with inventors.
2) 1 can be added to the sum through the input carry.
$>$ The circuit for subtracting $A-B$ consists of an adder with inverters placed between each data input B and the corresponding input of the full adder. The input carry C_{0} must be equal to 1 .

5. Binary Adder-Subtractor

$>$ The addition and subtraction operations can be combined into one circuit with one common binary adder by including an exclusive-OR gate with each full-adder.

The mode input M controls the operation as the following:

- $(M=0 \rightarrow$ adder.
- $M=1 \rightarrow$ subtractor.

Each $X O$ Rgate receives M signal and B
\circ When $M=0$ then $B \oplus 0=B$ and the carry $=0$, then the circuit performs the operation $A+B$.

- When $M=\mathbb{1}$ then $B \oplus \mathbb{1}=\bar{B}$ and the carry $=\mathbb{1}$, then the circuit performs the operation $A-B$.
$>$ The exclusive-OR with output V is for detecting an overflow.

